
WEAKLY COMPACT SETS
IN

BANACH SPACES

A dissertation submitted to the
Kent State University Graduate College
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

by

John Alexopoulos

August 1992



Dissertation written by

John Alexopoulos

B.S. Clarion University of Pennsylvania, 1985

M.A. Kent State University, 1987

Ph.D Kent State University, 1992

Approved by

, Chair, Doctoral Dissertation Committee

, Members, Doctoral Dissertation Committee

,

,

,

Accepted by

, Chair, Department of Mathematics

and Computer Science

, Dean, Graduate College

ii



Table of Contents

AKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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The classical theorem of Dunford and Pettis , identifies the bounded, uniformly inte-

grable subsets of L1(µ) with the relatively weakly compact sets. Another characterization

of uniform integrability is given in a theorem of De La Vallée Poussin which states that a

subset K of L1(µ) is bounded and uniformly integrable if and only if it is a bounded subset

of some Orlicz space L∗
F . We refine and improve this theorem in several directions. The

theorem of De La Vallée Poussin does not, for instance, specify just how well the function

F can be chosen. It gives little additional information in case the set in question is rela-

tively norm compact in L1(µ). Finally it gives no information on the structure of the set in

the corresponding Banach space of F -integrable functions. More specifically we establish

the fact that a subset K of L1 is relatively compact if and only if there is an N-function

F ∈ ∆′ so that K is relatively compact in L∗
F . Furthermore we prove that a subset K of

L1 is relatively weakly compact if and only if there is an N-function F ∈ ∆′ so that K is

relatively weakly compact in L∗
F . We then go on to show that a large class of non-reflexive

Orlicz spaces has the weak Banach-Saks property, by establishing a result for these spaces,

very similar to the Dunford-Pettis theorem for L1. Finally we investigate some similari-

ties of these spaces, with the space L1(µ). Kadec and Pelczýnski have shown that every

non-reflexive subspace of L1(µ) contains a copy of l1 complemented in L1(µ). On the other

hand Rosenthal investigated the structure of reflexive subspaces of L1(µ) and proved that

such subspaces, have non-trivial type. We show the same facts to hold true, for the special

class of non-reflexive Orlicz spaces, we have been investigating.
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Chapter 0

INTRODUCTION

The notation used throughout this dissertation is fairly standard. A close model is the

notation in Diestel [6].

(Ω,Σ, µ) will denote a non-atomic probability space and Lp(µ) will denote the Banach

space of (equivalence classes of) measurable, real-valued functions on Ω, whose p-th power is

µ-integrable. IR denotes the set of real numbers. The symbol ‖·‖ is used to denote a Banach

space norm. Sometimes subscripts are placed in the norm symbol, in order to identify the

space on which the norm is taken. The symbol χ(·) is used to denote characteristic functions

of sets. That is for a set A in Σ, χA is a real valued function defined on Ω by

χA(ω) =


1 if ω ∈ A

0 if ω /∈ A

Finally given a measurable function f on Ω and a real number a, the probabilistic notation

[f > a], [f ≥ a], [f < a], [f ≤ a] and [f = a] is used to describe the sets of all elements

ω ∈ Ω for which f(ω) > a, f(ω) ≥ a, f(ω) < a, f(ω) ≤ a and f(ω) = a respectively.

For the various concepts in Banach space theory and measure theory, not defined ex-

plicitly, the reader should consult Banach [4], Dunford and Schwartz [9], Diestel [6], Diestel

and Uhl [7], Rudin [28], [29] and Halmos [11].

Recall that a subset K of L1(µ) is called uniformly integrable if given ε > 0 there is a

δ > 0 so that sup {
∫
E |f |dµ : f ∈ K} < ε whenever µ(E) < δ. Alternatively K is bounded

1
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and uniformly integrable if and only if given ε > 0 there is an N > 0 so that

sup

{∫
[ |f |>c ]

| f | dµ : f ∈ K
}

< ε whenever c ≥ N.

The classical theorem of Dunford and Pettis [6, page 93], identifies the bounded, uni-

formly integrable subsets of L1(µ) with the relatively weakly compact sets. Another char-

acterization of uniform integrability is given in a theorem of De La Vallée Poussin [22,

pages 19-20], which states that a subset K of L1(µ) is bounded and uniformly integrable

if and only if there is an N -function F so that sup{
∫

F (f)dµ : f ∈ K} < ∞. A func-

tion F : IR → [0,∞) is called an N-function, if it is continuous, even and convex with

limt→∞
F (t)

t = ∞ and limt→0
F (t)

t = 0. Given an N-function F , the function G defined by

G(x) = sup{t|x| − F (t) : t ≥ 0} is an N-function, called the complement of F .

De La Vallée Poussin’s theorem is the focal point of Chapter 1 and the main reason that

the other chapters exist. We refine and improve this theorem in several directions. The

theorem of De La Vallée Poussin does not, for instance, specify just how well the function F

can be chosen. It gives little additional information in case the set in question is relatively

norm compact in L1(µ). Finally it gives no information on the structure of the set in the

corresponding Banach space of F -integrable functions. Such a space is called an Orlicz

space. Given an N-function F , the Orlicz space determined by F is defined by

L∗
F = {f measurable : ∃ c > 0 such that

∫
Ω

F (cf(ω))dµ(ω) < ∞},

where the usual identification of functions differing only on a set of measure zero, takes

place. The norm of an element f ∈ L∗
F is given by

‖f‖F = inf{1
c
(1 +

∫
F (cf)dµ) : c > 0}.

It is worth mentioning at this stage that if 1 < p < ∞ and F is defined by F (t) = |t|p,

then L∗
F is just the familiar Lp space. Most of the results in this dissertation deal with

Orlicz spaces whose generating N-functions satisfy the ∆2 or ∆′ conditions. We say that
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an N-function F satisfies the ∆2 condition (F ∈ ∆2) if there is a constant K so that

F (2x) ≤ KF (x) for large values of x. An N-function F satisfies the ∆′ condition (F ∈ ∆′)

if there is a constant K so that F (xy) ≤ KF (x)F (y) for large values of x and y.

More specifically in Section 1.4 we establish the fact that a subset K of L1 is relatively

compact if and only if there is an N-function F ∈ ∆′ so that K is relatively compact in

L∗
F (Theorem 1.4.3). Furthermore in the same Section we prove that a subset K of L1 is

relatively weakly compact if and only if there is an N-function F ∈ ∆′ so that K is relatively

weakly compact in L∗
F (Theorem 1.4.7). In establishing this last result, a weak compactness

criterion for Orlicz spaces was used (Theorem 1.4.5). The technique employed to prove

this criterion was mainly averaging. Thus the natural question of Orlicz spaces and their

relationship to Banach-Saks types of properties arises.

Recall that a Banach space X has the Banach-Saks (weak Banach-Saks) property if

every bounded (weakly null) sequence in X has a subsequence, each subsequence of which,

has norm convergent arithmetic means. Banach and Saks have shown in [5] that Lp, for

p > 1, has the Banach-Saks property, while Szlenk in [31] established the fact that L1

has the weak Banach-Saks property. Nishiura and Waterman showed in [24] that Banach

spaces with the Banach-Saks property are reflexive. On the other hand Kakutani in [15]

proved that uniformly convexifiable spaces have the Banach-Saks property. Baernstein in

[3] gave the first example of a reflexive Banach space that fails the Banach Saks property.

Furthermore Schreier in [30] established the fact that C[0, 1], fails the weak Banach-Saks

property. Akimovich in [1] has shown that reflexive Orlicz spaces are uniformly convexifiable

and so they have the Banach-Saks property.

In Chapter 2 we show that a large class of non-reflexive Orlicz spaces1 has the weak

Banach-Saks property, by establishing a result for these spaces, very similar to the Dunford-

Pettis Theorem for L1. Before we mention the results in Chapter 2, we need to recall, that
1The idea for studying this class comes from [18]
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a subset K of an Orlicz space L∗
F , has equi-absolutely continuous norms, if given ε > 0 there

is a δ > 0 so that

sup{‖χA · f‖F : f ∈ K} < ε

for all measurable sets A with µ(A) < δ.

In Section 2.1 we show that if F ∈ ∆2 and its complement G satisfies limt→∞
G(ct)
G(t) = ∞

for some c > 0, then any weakly null sequence in L∗
F has equi-absolutely continuous norms

(Theorem 2.1.3). As a corollary to this theorem we have that if F is as above then a bounded

set in L∗
F is relatively weakly compact if and only if it has equi-absolutely continuous norms

(Corollary 2.1.4). Furthermore, under the same hypothesis L∗
F has the weak Banach-Saks

property (Corollary 2.1.5). These results complement the ones of T. Ando in [2]. In Section

2.2 we give an application in convex function theory. Specifically we answer negatively the

following question posed in [17, page 30]: Given an N-function F ∈ ∆′, is it possible to find

an N-function H equivalent to F so that H satisfies the ∆′ condition, for all real x, y ?

Having this ’Dunford-Pettis’ type of result for this special class of non-reflexive Orlicz

spaces, we continue on to Chapter 3, where we investigate some similarities of these spaces,

with the space L1(µ). Kadec and Pelczýnski in [13] have shown that every non-reflexive sub-

space of L1(µ) contains a copy of l1 complemented in L1(µ). On the other hand Rosenthal

in [27] investigated the structure of reflexive subspaces of L1(µ) and proved that such sub-

spaces, have non-trivial type. Recall that a Banach space X has type p for some 1 < p ≤ 2,

if there is a K > 0, so that

(
∫ 1

0
‖

n∑
i=1

ri(t)xi‖pdt)
1
p ≤ K · (

n∑
i=1

‖xi‖p)
1
p ,

where (ri) denotes the sequence of Rademacher functions2 and x1, . . . , xn are arbitrary
2For a positive integer n, rn : [0, 1] → {−1, 1} is defined by

rn(t) =

{
−1 if t = 1
(−1)i−1 if t ∈ [ i−1

2n , i
2n ), where i = 1, . . . , 2n
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elements of the Banach space X.

In Chapter 3 we show the same facts to hold true for the special class of non-reflexive

Orlicz spaces we have been investigating. In particular, in Section 3.1 we show that if

F is an N-function in ∆2 with its complement G satisfying limt→∞
G(ct)
G(t) = ∞ then every

non-reflexive subspace of L∗
F , contains a copy of l1 complemented in L∗

F (Theorem 3.1.4).

Furthermore in Section 3.3 we show that if F is an N-function in ∆2 with its complement

G satisfying limt→∞
G(ct)
G(t) = ∞ then every reflexive subspace of L∗

F has non trivial type

(Theorem 3.3.3).



Chapter 1

DE LA VALLÉE POUSSIN’S THEOREM REVISITED

1.1 Uniform integrability and De La Vallée Poussin’s Theorem.

Definition 1.1.1 A subset K of L1(µ) is called uniformly integrable if

lim
c→∞

sup{
∫
[ |f |≥c ]

| f | dµ : f ∈ K} = 0 .

That is given ε > 0 there is a cε > 0 so that for each f ∈ K and each c ≥ cε we have∫
[ |f |≥c ]

| f | dµ < ε .

Another way of defining uniform integrability is described in the following proposition:

Proposition 1.1.1 A subset K of L1(µ) is uniformly integrable if and only if it is L1 -

bounded and for each ε > 0 there is a δ > 0 so that sup{
∫
A | f | dµ : f ∈ K} < ε for all

A ∈ Σ with µ(A) < δ.

Proof : First note that for all measurable A, f ∈ K, c > 0 we have∫
A
| f | dµ =

∫
A∩[ |f |<c ]

| f | dµ +
∫

A∩[ |f |≥c ]
| f | dµ ≤ cµ(A) +

∫
[ |f |≥c ]

| f | dµ .

Fix ε > 0 and choose c0 > 0 so that sup{
∫
[ |f |≥c ] | f | dµ : f ∈ K} < ε

2 whenever c ≥ c0.

Then for all f ∈ K we have∫
Ω
| f | dµ ≤ c0µ(Ω) +

∫
[ |f |≥c0 ]

| f | dµ ≤ c0 +
ε

2

and thus K is L1 bounded. Now let 0 < δ < ε
2c0

. Then for all measurable A with µ(A) < δ

and all f ∈ K we have∫
A
| f | dµ ≤ c0µ(A) +

∫
[ |f |≥c0 ]

| f | dµ <
ε

2
+

ε

2
= ε .

6
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We now prove the converse. Fix ε > 0 and choose δ > 0 so that sup{
∫
A | f | dµ : f ∈

K} < ε whenever A is measurable with µ(A) < δ. Let M = sup{
∫
Ω | f | dµ : f ∈ K} and

choose c0 > 0 so that M
c0

< δ. Then for all f ∈ K and all c ≥ c0 we have

µ([ | f |≥ c ]) ≤ 1
c

∫
[ |f |≥c ]

| f | dµ ≤ M

c0
< δ .

So
∫
[ |f |≥c ] | f | dµ < ε and so we are done.

The following well known theorem of Dunford and Pettis, gives some more insight to the

notion of uniform integrability.

Theorem 1.1.2 (Dunford-Pettis) : A subset K of L1(µ) is uniformly integrable if and

only if it is relatively weakly compact.

A proof of this theorem can be found in [6, page 93].

Yet another characterization of uniformly integrable sets is an old theorem that finds its

roots in Harmonic Analysis and Potential theory. It is due to De La Vallée Poussin. Since

it is this theorem that we deal with in this chapter, we state and prove this result in detail

(see [22, pages 19–20]).

Theorem 1.1.3 (De La Vallée Poussin) A subset K of L1(µ) is uniformly integrable if

and only if there is a non-negative and convex function Q with limt→∞
Q(t)

t = ∞ so that

sup{
∫
Ω

Q(| f |)dµ : f ∈ K} < ∞ .

Proof : Suppose that K is a uniformly integrable subset of L1(µ). We will construct a

non-negative and non-decreasing function q that is constant on [n, n + 1) for n = 0, 1, . . .

with limt→∞ q(t) = ∞ and we will set Q(x) =
∫ x
0 q(t)dt for x > 0. Use the hypothesis to

choose a subsequence (cn) of the positive integers so that

sup{
∫
[ |f |≥cn ]

| f | dµ : f ∈ K} <
1
2n

∀ n = 1, 2, . . . .
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Then for each f ∈ K and all n = 1, 2, . . . we have

∫
[ |f |≥cn ]

| f | dµ =
∞∑

m=cn

∫
[ m≤|f |<m+1 ]

| f | dµ

≥
∞∑

m=cn

mµ([ m ≤| f |< m + 1 ])

≥
∞∑

m=cn

µ([ | f |≥ m ]) .

So for all f ∈ K we have
∞∑

n=1

∞∑
m=cn

µ([ | f |≥ m ]) ≤ 1 .

Now for m = 1, 2, . . . let qm be the number of the positive integers n, for which cn ≤ m.

Then qm ↗∞. Furthermore observe that

∞∑
n=1

∞∑
m=cn

µ([ | f |≥ m ]) =
∞∑

k=1

qkµ([ | f |≥ k ]) .

Let q0 = 0 and define q(t) = qn if t ∈ [n, n+1) for n = 0, 1, 2, . . . . Then if Q(x) =
∫ x
0 q(t)dt

we have

∫
Ω

Q(| f |)dµ =
∞∑

n=0

∫
[ n≤|f |<n+1 ]

Q(| f |)dµ

≤
∞∑

n=0

(
n∑

m=0

qm) · µ([ n ≤| f |< n + 1 ])

= q0 · µ([ 0 ≤| f |< 1 ]) + (q0 + q1) · µ([ 1 ≤| f |< 2 ]) + · · ·

=
∞∑

n=0

qnµ([ | f |≥ n ])

≤ 1 .

So sup{
∫
Ω Q(| f |)dµ : f ∈ K} < ∞.

To see that Q is convex, fix 0 ≤ x1 < x2. We then have

Q(
1
2
(x1 + x2)) =

∫ 1
2
(x1+x2)

0
q(t)dt

=
∫ x1

0
q(t)dt +

∫ 1
2
(x1+x2)

x1

q(t)dt
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≤
∫ x1

0
q(t)dt +

1
2

∫ 1
2
(x1+x2)

x1

q(t)dt +
1
2

∫ x2

1
2
(x1+x2)

q(t)dt

=
1
2

∫ x1

0
q(t)dt +

1
2

∫ x2

0
q(t)dt

=
1
2
(Q(x1) + Q(x2)) .

Finally observe that

Q(x) =
∫ x

0
q(t)dt ≥

∫ x

x
2

q(t)dt ≥ x

2
q(

x

2
)

and thus Q(x)
x ≥ 1

2q(x
2 ) →∞ as x →∞.

We now prove the converse. Let M = sup{
∫
Ω Q(| f |)dµ : f ∈ K}. Let ε > 0 and

choose c0 > 0 so that Q(t)
t > M

ε whenever t ≥ c0. Then for f ∈ K and c ≥ c0 we have that

| f |< ε
M Q(| f |) on the set [ | f |≥ c ]. Thus∫

[ |f |≥c ]
| f | dµ ≤ ε

M

∫
[ |f |≥c ]

Q(| f |)dµ ≤ ε

M
M = ε

and so we are done.

1.2 Some facts about N-Functions

In this section we will summarize the necessary facts about a special class of convex

functions called N-functions. For a detailed account of these facts, the reader could consult

the first chapter in [17].

Definition 1.2.1 Let p : [0,∞) → [0,∞) be a right continuous, monotone increasing func-

tion with

1. p(0) = 0;

2. limt→∞ p(t) = ∞;

3. p(t) > 0 whenever t > 0;

then the function defined by

F (x) =
∫ |x|

0
p(t)dt
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is called an N-function.

The following proposition gives an alternative view of N-functions.

Proposition 1.2.1 The function F is an N -function if and only if F is continuous, even

and convex with

1. limx→0
F (x)

x = 0;

2. limx→∞
F (x)

x = ∞;

3. F (x) > 0 if x > 0.

Definition 1.2.2 For an N-function F define

G(x) = sup{t|x| − F (t) : t ≥ 0} .

Then G is an N -function and it is called the complement of F .

Observe that F is the complement of its complement G.

Theorem 1.2.2 (Young’s Inequality) If F and G are two mutually complementary N-

functions then

xy ≤ F (x) + G(y) ∀x, y ∈ IR .

Proposition 1.2.3 The composition of two N -functions is an N -function. Conversely

every N -function can be written as a composition of two other N -functions.

The following material deals with the comparative growth of N-functions.

Definition 1.2.3 For N -functions F1, F2 we write F1 ≺ F2 if there is a K > 0 so that

F1(x) ≤ F2(Kx) for large values of x. If F1 ≺ F2 and F2 ≺ F1 then we say that F1 and F2

are equivalent.
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Proposition 1.2.4 If F1 ≺ F2 then G2 ≺ G1, where Gi is the complement of Fi. In

particular if F1(x) ≤ F2(x) for large values of x then G2(x) ≤ G1(x) for large values of x.

Definition 1.2.4 A convex function Q is called the principal part of an N -function F , if

F (x) = Q(x) for large x.

Proposition 1.2.5 If Q is convex with lim
x→∞

Q(x)
x

= ∞ then Q is the principal part of some

N -function.

Definition 1.2.5 An N -function F is said to satisfy the ∆2 condition (F ∈ ∆2) if

lim supx→∞
F (2x)
F (x) < ∞. That is, there is a K > 0 so that F (2x) ≤ KF (x) for large values

of x.

Definition 1.2.6 An N-Function F is said to satisfy the ∆′ condition (F ∈ ∆′) if there is

a K > 0 so that F (xy) ≤ KF (x)F (y) for large values of x and y.

Definition 1.2.7 An N-function F is said to satisfy the ∆3 condition (F ∈ ∆3) if there is

a K > 0 so that xF (x) ≤ F (Kx) for large values of x.

Definition 1.2.8 An N-function F is said to satisfy the ∆2 condition (F ∈ ∆2) if there is

a K > 0 so that (F (x))2 ≤ F (Kx) for large values of x.

Theorem 1.2.6 Let F be an N-function and let G be its complement; then the following

hold.

• If F ∈ ∆′ then F ∈ ∆2.

• If F ∈ ∆3 then its complement G ∈ ∆2.

• If F ∈ ∆2 then its complement G ∈ ∆′.

• If F ∈ ∆2 then there is a p > 1 so that if H(x) = |x|p then F ≺ H.

Finally the classes ∆′, ∆2, ∆3 and ∆2 are preserved under equivalence of N -functions.
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1.3 Some facts about Orlicz Spaces

In this section we summarize the necessary definitions and results about Orlicz spaces.

A detailed account can be found in chapter two of [17].

Definition 1.3.1 For an N -function F and a measurable f define

F(f) =
∫

F (f)dµ.

Let LF = {f measurable : F(f) < ∞}. If G denotes the complement of F let

L∗
F = {f measurable : |

∫
fgdµ| < ∞ ∀g ∈ LG} .

The collection L∗
F is then a linear space. For f ∈ L∗

F define

‖f‖F = sup{|
∫

fgdµ| : G(g) ≤ 1} .

Then (L∗
F , ‖ · ‖F ) is a Banach space, called an Orlicz space.

The following theorem establishes the fact that an Orlicz space is a dual space.

Theorem 1.3.1 Let F be an N-function and let EF be the closure of the bounded functions

in L∗
F . Then the conjugate space of EF is L∗

G, where G is the complement of F .

Theorem 1.3.2 Let F be an N-function and G be its complement. Then the following

statements are equivalent:

1. L∗
F = EF .

2. L∗
F = LF .

3. The dual of L∗
F is L∗

G.

4. F ∈ ∆2.
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Theorem 1.3.3 (Hölder’s Inequality) For f ∈ L∗
F and g ∈ L∗

G we have

∫
|fg|dµ ≤ ‖f‖F · ‖g‖G .

Theorem 1.3.4 If f ∈ L∗
F then

‖f‖F = inf
{

1
k
(1 + F(kf)) : k > 0

}
.

It follows then that f ∈ L∗
F if and only if there is c > 0 so that F(cf) < ∞.

Proposition 1.3.5 If ‖f‖F ≤ 1 then f ∈ LF and F(f) ≤ ‖f‖F .

Comparison of N-functions, gives rise to the following result concerning their corresponding

Orlicz spaces.

Proposition 1.3.6 If F1 ≺ F2 then L∗
F2
⊂ L∗

F1
and the inclusion mapping is continuous.

Definition 1.3.2 We say that a collection K ⊂ L∗
F has equi-absolutely continuous norms

if

∀ ε > 0 ∃ δ > 0 so that sup{‖χEf‖F : f ∈ K} < ε whenever µ(E) < δ.

For f ∈ L∗
F we say that f has absolutely continuous norm if {f} has equi-absolutely con-

tinuous norms.

The following two results deal with the equi-absolute continuity of the norms.

Theorem 1.3.7 A function f ∈ L∗
F has absolutely continuous norm if and only if f ∈ EF .

Theorem 1.3.8 If K ⊂ L∗
F , K has equi-absolutely continuous norms and K is relatively

compact in the topology of convergence in measure, then K is relatively (norm) compact in

L∗
F .
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1.4 De La Vallée Poussin’s theorem revisited

We state and prove the following lemma which can be found in [17, page 62].

Lemma 1.4.1 Given an N -function F , there is an N -function H ∈ ∆′ so that H (H(x)) ≤

F (x) for large values of x.

Proof : Write F = F1 ◦ F2, where F1, F2 are N -functions and let Gi be the complement of

Fi. Let Q(x) = eG1(x)+G2(x). The function Q is convex, with lim
x→∞

Q(x)
x

= ∞. Hence there

is an N -function K whose principal part is Q. Clearly K ∈ ∆2 and Gi(x) ≤ K(x) for large

x. So if H is complementary to K, we must have H ∈ ∆′ and H(x) ≤ Fi(x) for large x.

Thus H (H(x)) ≤ F1 (F2(x)) = F (x) for large values of x.

Lemma 1.4.2 If F ∈ ∆2 and K ⊂ L∗
F then the following statements are equivalent:

I) The set K has equi-absolutely continuous norms.

II)The collection {F (f) : f ∈ K} is uniformly integrable in L1.

Proof : The implication “(I) ⇒ (II)” follows directly from the fact that

∫
E

F (f)dµ =
∫

F (χEf)dµ = F(χEf) ≤ ‖χEf‖F

whenever ‖χEf‖F ≤ 1.

Next suppose {F (f) : f ∈ K} is uniformly integrable. Let ε > 0 and choose n ∈ IN so

that 1
2n−1 < ε. Since F ∈ ∆2, there are K > 0, c > 0 so that F (2nx) ≤ KF (x) for x ≥ c.

Choose 0 < δ < 1
2F (c) so that

sup
{∫

E
F (f)dµ : f ∈ K

}
<

1
2K

whenever µ(E) < δ.

Then for µ(E) < δ, f ∈ K we have

∫
E

F (2nf)dµ ≤
∫

E
F (c)dµ +

∫
E∩[ |f |≥c ]

F (2nf)dµ

<
1
2

+ K

∫
E∩[ |f |≥c ]

F (f)dµ < 1.
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Thus ‖2nfχE‖F ≤
∫

F (2nfχE)dµ + 1 < 2. So ‖fχE‖F < 1
2n−1 < ε.

From these two lemmas we obtain the following characterization of norm compact sub-

sets of L1.

Theorem 1.4.3 A subset K of L1(µ) is relatively compact if and only if there is an N -

function F ∈ ∆′ so that K is relatively compact in L∗
F .

Proof : Since the inclusion map L∗
F ↪→ L1 is continuous, necessity follows.

Suppose K is relatively compact in L1. Then K is also relatively weakly compact in

L1 and so by the theorem of De La Vallée Poussin there is an N -function H so that

sup {
∫

H(f)dµ : f ∈ K} < ∞. By Lemma (1.4.1) there is an N -function F ∈ ∆′ with

F (F (x)) ≤ H(x) for large values of x. Thus sup {
∫

F (F (f)) dµ | f ∈ K} < ∞ and by De

La Vallée Poussin’s theorem again, we have that {F (f) | f ∈ K} is uniformly integrable

in L1. So by Lemma (1.4.2) K has equi-absolutely continuous norms in L∗
F . Since K is

relatively compact in L1, it is also relatively compact in the topology of convergence in

measure. Hence K is relatively compact in L∗
F .

The following results deal with relative weak compactness in L1 and L∗
F . We begin by

mentioning a remarkable theorem of J. Komlós [16].

Theorem 1.4.4 (Komlós) If (fn) is bounded in L1 then there is a subsequence (fnk
) of

(fn) and a function f ∈ L1 so that each subsequence of (fnk
) has arithmetic means µ-a.e.

convergent to f .

Definition 1.4.1 A subset S of a Banach space X is a Banach-Saks set if every sequence in

S has a subsequence, each subsequence of which has norm convergent arithmetic means. The

space X is said to have the Banach-Saks property if every bounded set of X is a Banach-Saks

set. Similarily X is said to have the weak Banach-Saks property, if every weakly compact

set in X is a Banach-Saks set.
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It is an easy consequence of the Hahn-Banach theorem, that Banach-Saks sets are weakly

compact. So we are now ready for the next theorem.

Theorem 1.4.5 Let K ⊂ L∗
F . If K has equi-absolutely continuous norms and it is norm

bounded, then K is a Banach-Saks set in L∗
F . In particular K is relatively weakly compact

in L∗
F .

Proof : Since K has equi-absolutely continuous norms, K ⊂ EF . Let (fn) be a sequence in

K. Since (fn) is bounded in L∗
F -norm, it is also bounded in L1-norm. Hence by Komlós’s

theorem, there is a subsequence (fnk
) of (fn) and a function f ∈ L1 so that any subsequence

of (fnk
) has µ−a.e. convergent arithmetic means to f . Let G denote the complement of F .

Note that for any measurable E and any g ∈ L∗
G with ‖g‖G ≤ 1 we have

|
∫

gχEf dµ| ≤
∫
|gχEf |dµ

≤ lim inf
n

∫
|gχE

1
n

n∑
k=1

fnk
|dµ

≤ sup
n

1
n

n∑
k=1

∫
|gχEfnk

|dµ

≤ sup
n

1
n

n∑
k=1

‖g‖G · ‖χEfnk
‖F

≤ sup{‖χEh‖F : h ∈ K}.

Thus ‖χEf‖F ≤ sup{|
∫

gχEfdµ| : ‖g‖G ≤ 1} ≤ sup{‖χEh‖F : h ∈ K}. So f ∈ L∗
F

and f has absolutely continuous norm. Let (hk) be any subsequence of (fnk
) and let

an = 1
n

∑n
k=1 hk.

We now claim that an → f in L∗
F−norm. Since the inclusion map L∗

G ↪→ L1 is continu-

ous, there is a K > 0 so that ‖g‖1 ≤ K‖g‖G for all g ∈ L∗
G. Fix ε > 0 and choose δ > 0 so

that sup{‖χAh‖F : h ∈ K} < ε
3 whenever µ(A) < δ.

By Egorov’s theorem, there is a measurable set E with µ(Ω \ E) < δ so that an → f

uniformly on E. Choose N ∈ IN so that ‖χE(an − f)‖∞ < ε
3K whenever n ≥ N . Then for
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any g ∈ L∗
G with ‖g‖G ≤ 1 and n ≥ N we have

|
∫

g(an − f)dµ| ≤
∫
|g| · |an − f |dµ

=
∫

E
|g| · |an − f |dµ +

∫
Ω\E

|g| · |an − f |dµ

≤ ‖ g ‖1 · ‖ χE(an − f) ‖∞ + ‖ g ‖G · ‖ χΩ\E(an − f) ‖F

≤ K‖g‖G
ε

3K
+ ‖g‖G(‖anχΩ\E‖F + ‖fχΩ\E‖F )

<
ε

3
+ ‖

(
1
n

n∑
k=1

hk

)
χΩ\E‖F +

ε

3

≤ 2ε

3
+

1
n

n∑
k=1

‖hkχΩ\E‖

<
2ε

3
+

ε

3
= ε.

So the claim is established.

Thus K is a Banach-Saks set in L∗
F . It also follows that fnk

→ f weakly in L∗
F and so

K is relatively weakly compact in L∗
F thanks to the Eberlein-Smulian theorem.

A. Grothendieck has shown that if 1 ≤ p < ∞ and X is a closed subspace of Lp(µ)

contained in L∞(µ), then X is finite dimensional (see [10] and [28, ch. 5]). We generalize

this result as follows.

Theorem 1.4.6 Suppose that X ⊂ L∞(µ) and suppose that X is a closed subspace of an

Orlicz space L∗
F . Then X is finite dimensional.

Proof : Let i1 : X ↪→ L∞(µ) and i2 : L∞(µ) ↪→ L∗
F be the natural inclusion maps, with

X having the topology inherited from L∗
F . Let (fn) be a sequence in X and assume that

‖ fn− f ‖F → 0 for some f ∈ X . Also assume that ‖ fn− g ‖∞→ 0 for some g ∈ L∞ . The

first assumption yields a subsequence (fnk
) of (fn) with fnk

→ f µ − a.e. . Since fn → g

uniformly µ − a.e. we have that f = g µ − a.e. . Thus by the closed graph theorem i1 is

continuous.
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Now by Theorem (1.4.5) i2 is weakly compact and as L∞(µ) has the Dunford-Pettis

property, i2 is completely continuous. Hence i2 ◦ i1 is weakly compact and completely

continuous. But i2 ◦ i1 is the identity on X. Now it is not hard to see that the identity on

X is compact and hence X is finite dimensional.

We now prove the following stronger version of De La Vallée Poussin’s theorem.

Theorem 1.4.7 A set K is relatively weakly compact in L1 if and only if there is F ∈ ∆′

so that K is relatively weakly compact in L∗
F .

Proof : Since the inclusion map L∗
F ↪→ L1 is continuous and thus weak-to-weak continous,

necessity follows. So suppose that K is relatively weakly compact in L1. By De La Vallée

Poussin’s theorem, there is an N -function H with sup{
∫

H(f)dµ : f ∈ K} < ∞. By Lemma

(1.4.1), there is F ∈ ∆′ with F (F (x)) ≤ H(x) for large x. So sup{
∫

F (F (f)) dµ : f ∈ K} <

∞, and by De La Vallée Poussin’s theorem once more, we have that {F (f) : f ∈ K} is rel-

atively weakly compact in L1. Hence by Lemma (1.4.2), K has equi-absolutely continuous

norms in L∗
F . Since K is obviously bounded in L∗

F , we then have that K is relatively weakly

compact in L∗
F , thanks to Theorem (1.4.5).

Remark: If K ⊂ L1 and if there is an N -function F with its complementary G ∈ ∆2 so

that sup{
∫

F (f)dµ : f ∈ K} < ∞ then K is a bounded subset of Lp for some p > 1.

Indeed, if G ∈ ∆2 then there is q > 1 so that Lq ⊂ L∗
G. Let T : Lq → L∗

G denote the

natural inclusion map. Then if 1
p + 1

q = 1 the adjoint operator T ∗ : L∗
F → Lp is also a

natural inclusion map. Since T is continuous so is T ∗. Hence K bounded in L∗
F , implies

that K is also bounded in Lp.



Chapter 2

ORLICZ SPACES AND THE WEAK BANACH-SAKS

PROPERTY

2.1 A weak compactness result reminiscent of the Dunford-Pettis theo-

rem

In this section we deal with a special class of Orlicz spaces, namely those spaces whose

generating N-function F satisfies ∆2 and the function G complementary to F satisfies

limt→∞
G(ct)
G(t) = ∞ for some c > 0.1 This class of spaces has been examined by D. Leung

and in [18] they have been shown to satisfy the weak Dunford-Pettis property2 while they

fail the Dunford-Pettis property. This fact shows that such spaces are not isomorphic to

L1(p) for any probability p. Nonetheless they exhibit some striking similarities with L1

spaces. Some of these similarities are discussed in Chapters 2 and 3. At this point we

should mention that V. A. Akimovich has shown in [1] that every reflexive Orlicz space over

a probability is isomorphic to a uniformly convex Orlicz space. Combining this result with

Kakutani’s result in [15] that states that uniformly convex spaces have the Banach-Saks

property, one can immediately conclude that reflexive Orlicz spaces have the Banach-Saks

property.

Lemma 2.1.1 Let K ⊂ L∗
F where F ∈ ∆2. Suppose that K fails to have equi-absolutely

continuous norms. Then there is an ε0 > 0, a sequence (fn) ⊂ K and a sequence (En) of
1The following question remains unresolved. Given an N-function F ∈ ∆2 with its complement G /∈ ∆2

does there exist an N-function Φ equivalent to F so that its complement Ψ satisfies limt→∞
Ψ(ct)
Ψ(t)

= ∞ for

some c > 0?
2A Banach lattice X has the weak Dunford-Pettis property if any weakly compact operator from X into

any Banach space maps disjoint, weakly null sequences onto norm null sequences.

19
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pairwise disjoint measurable sets, so that ‖ χEnfn ‖F > ε0 for all positive integers n.

Proof : Since K does not have equi-absolutely continuous norms, there is an η0 > 0 and

sequences (kn) ⊂ K, (An) ⊂ Σ, with µ(An) < 1
2n , so that ‖ χAnkn ‖F > η0 for all positive

integers n. For each n let Bn =
⋃∞

j=n Aj . Then Bn ⊃ Bn+1. Furthermore

µ(Bn) = µ(
∞⋃

j=n

Aj) ≤
∞∑

j=n

µ(Aj) ≤
∞∑

j=n

1
2j
→ 0

as n →∞, with ‖ χBnkn ‖F ≥‖ χAnkn ‖F > η0 for all positive integers n. Since F ∈ ∆2 we

have that each f ∈ L∗
F has absolutely continuous norm. So if n1 = 1 then there is n2 > n1

so that ‖ χBn1\Bn2
kn1 ‖F > η0

2 (After all µ(Bn) ↘ 0 ). Let E1 = Bn1 \Bn2 and let f1 = kn1 .

Now choose n3 > n2 so that ‖ χBn2\Bn3
kn2 ‖F > η0

2 . Let E2 = Bn2 \ Bn3 and let f2 = kn2 .

Continue on. The result is now established if we take ε0 = η0

2 .

We next present a ’Rosenthal’s Lemma’ type of result. (cf. [6, page 82].)

Lemma 2.1.2 Let X be a Banach space. Suppose that (xn) ⊂ X is weakly null and (x∗n) ⊂

X∗ is weak∗ null. Then for each ε > 0 there is a subsequence (nk) of the positive integers,

so that, for each positive integer k we have

∑
j 6=k

|< x∗nj
, xnk

>|< ε .

Proof : Let ε > 0. Let n1 = 1. Since x∗n → 0 weak∗ there is an infinite subset A1 of the

positive integers so that
∑

j∈A1
|< x∗j , xn1 >| < ε

2 . Since xn → 0 weakly and since A1 is

infinite, we can find n2 > n1 with n2 ∈ A1, so that |< x∗n1
, xn2 >| < ε

2 . Similarly there

is an infinite subset A2 of A1 so that
∑

j∈A2
|< x∗j , xn2 >| < ε

2 . Again choose n3 > n2

with n3 ∈ A2 so that |< x∗n1
, xn3 >| < ε

4 and |< x∗n2
, xn3 >| < ε

4 . There is an infinite

subset A3 of A2 so that
∑

j∈A3
|< x∗j , xn3 >| < ε

2 . Choose n4 > n3 with n4 ∈ A3 so that

|< x∗ni
, xn4 >| < ε

6 for i = 1 . . . 3. Continue inductively to construct a sequence of infinite

subsets of the positive integers, A1 ⊃ A2 · · · ⊃ Ak ⊃ · · · and a sequence n1 < n2 < · · · of
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positive integers with

(i) nk+1 ∈ Ak for all k.

(ii)
∑

j∈Ak

|< x∗j , xnk+1
>|< ε

2
for all k.

(iii) |< x∗nj
, xnk+1

>|< ε

2k
for all k and for j = 1, 2, . . . , k.

Now for fixed positive integer k we have

∑
j 6=k

|< x∗nj
, xnk

>| =
k−1∑
j=1

|< x∗nj
, xnk

>| +
∞∑

j=k+1

|< x∗nj
, xnk

>|

<
ε

2(k − 1)
(k − 1) +

∑
j∈Ak

|< x∗nj
, xnk

>|

<
ε

2
+

ε

2
= ε.

And so we are done.

Now we are ready for the main result of this section.

Theorem 2.1.3 Suppose that F ∈ ∆2 and that its complement G satisfies

lim
t→∞

G(ct)
G(t)

= ∞ for some c > 0.

Then any weakly null sequence in L∗
F has equi-absolutely continuous norms.

Proof : Suppose not. Then there is a weakly null sequence (fn) ⊂ L∗
F that fails to have

equi-absolutely continuous norms. Using Lemma (2.1.1) we may assume that there is an

ε0 > 0 and a sequence (En) of pairwise disjoint measurable sets so that ‖ χEnfn ‖F > ε0

for all positive integers n. Now choose a sequence (gn) ⊂ LG so that each gn is supported

on En with
∫

G(gn) dµ ≤ 1 and so that |
∫

gnfndµ | > ε0 . For a fixed f ∈ L∗
F Hölder’s

Inequality yields

|
∫

fgndµ |= |
∫

χEnfgndµ | ≤ ‖ χEnf ‖F · ‖ gn ‖G .

But since (En) are pairwise disjoint and µ is finite we have that µ(En) → 0 . Furthermore

since F ∈ ∆2 and f ∈ L∗
F , f has absolutely continuous norm. Thus ‖ χEnf ‖F → 0 . As
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(gn) is norm bounded, we can conclude that ‖ χEnf ‖F · ‖ gn ‖G→ 0 and so
∫

fgndµ → 0 .

Hence (gn) is weak∗ null. By Lemma (2.1.2) there is a subsequence (nk) of the positive

integers so that for each k we have
∑

j 6=k |
∫

gnjfnk
dµ |< ε0

2 .

We now claim that
∫

G(gn

c )dµ → 0 . Fix ε > 0. Since limt→∞
G(ct)
G(t) = ∞ then

limt→∞
G(t/c)
G(t) = 0 . Choose t0 > 0 so that G(t/c)

G(t) < ε
2 whenever t ≥ t0 . Since µ(En) → 0,

there is a positive integer N so that µ(En) < ε
2G(t0/c) whenever n ≥ N . Hence if n ≥ N

we have ∫
G(gn/c)dµ =

∫
[ |gn|<t0 ]

G(gn/c)dµ +
∫
[ |gn|≥t0 ]

G(gn/c)dµ

≤ G(t0/c)µ(En) +
∫

ε

2
G(gn)dµ

<
ε

2
+

ε

2
= ε .

So the claim is established.

Now choose a subsequence (nkm) of (nk) so that

∞∑
m=1

∫
G(

gnkm

c
)dµ < ∞ .

Let g =
∑∞

m=1 gnkm
. Then g is well defined and g ∈ L∗

G, since
∫

G(g/c)dµ < ∞ . Since (fn)

is weakly null, we must have
∫

gfnkm
dµ → 0 as m →∞ . But for each positive integer m

we have

|
∫

gfnkm
dµ | = |

∫
(
∞∑

j=1

gnkj
)fnkm

dµ |

≥ |
∫

gnkm
fnkm

dµ | −
∑
j 6=m

|
∫

gnkj
fnkm

dµ |

≥ |
∫

gnkm
fnkm

dµ | −
∑

j 6=km

|
∫

gnjfnkm
dµ |

> ε0 −
ε0

2
=

ε0

2
,

which is a contradiction.

As a corollary to the theorem above, we get the following result that resembles the

Dunford-Pettis theorem for L1.
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Corollary 2.1.4 Let F ∈ ∆2 and suppose that its complement G satisfies

lim
t→∞

G(ct)
G(t)

= ∞ for some c > 0 .

Then a bounded set K ⊂ L∗
F is relatively weakly compact if and only if K has equi-absolutely

continuous norms.

Proof : Suppose that K ⊂ L∗
F is relatively weakly compact. If K fails to have equi-absolutely

continuous norms then there is an ε0 > 0, a sequence (fn) ⊂ K and a sequence (En) of

measurable sets with µ(En) → 0 so that ‖ χEnfn ‖F > ε0, for each positive integer n. By

the Eberlein-Smulian theorem, there is an f ∈ L∗
F and a subsequence (fnk

) of (fn) so that

fnk
→ f weakly in L∗

F . So by Theorem (2.1.3), (fnk
− f) has equi-absolutely continuous

norms. Thus ‖ χEnk
(fnk

− f) ‖F → 0 as k →∞. As F ∈ ∆2 and f ∈ L∗
F , f has absolutely

continuous norm. Hence ‖ χEnk
f ‖F → 0 as k →∞ . But

ε0 <‖ χEnk
fnk

‖F ≤ ‖ χEnk
f ‖F + ‖ χEnk

(fnk
− f) ‖F

which is a contradiction.

The converse is just Theorem (1.4.5).

Corollary 2.1.5 Under the hypothesis of Corollary (2.1.4), L∗
F has the weak Banach-Saks

property.

Proof : It follows directly from Corollary (2.1.4) and Theorem (1.4.5).

2.2 An application in convex function theory

Recall that an N-function G satisfies the ∆3 condition if there is c > 0 so that tG(t) ≤

G(ct) for large values of t. If G ∈ ∆3 then its complement F ∈ ∆2 [17, pages 29–30].

Furthermore it is clear that limt→∞
G(ct)
G(t) = ∞. Also note that if G ∈ ∆2 then G ∈ ∆3 .

In [17, page 30] the following question is posed: Given an N-function F ∈ ∆′ is it

possible to find an N-function H, equivalent to F so that for some K > 0

H(xy) ≤ K ·H(x) ·H(y) ∀ x, y ∈ IR ?
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The following theorem answers this question in the negative.

Theorem 2.2.1 Suppose that G ∈ ∆2 and let F denote the complement of G. Then there

is no N-function H equivalent to F which satisfies the following condition:

There is a K > 0 so that H(t1 · t2) ≤ K ·H(t1) ·H(t2) for all real t1 and t2.

Proof : Suppose that such an H existed. Let µ denote Lebesgue measure on the interval

[0, 1]. Since µ is non-atomic, we can find a sequence (En) of pairwise disjoint measurable sets,

each of which has positive measure. For each positive integer n, let hn = H−1( 1
µ(En))χEn .

Then hn ∈ L∗
H with

∫
H(hn)dµ = 1 for all positive integers n. It follows from Lemma

(1.4.2) that no subsequence of (hn) has equi-absolutely continuous norms.

We now claim that (hn) is weakly null. Let (hnk
) be any subsequence of (hn). Then for

any positive integer N we have

∫
H(

1
N

N∑
k=1

hnk
)dµ ≤ K ·H(

1
N

) ·
∫

H(
N∑

k=1

hnk
)dµ

= K ·H(
1
N

) ·
N∑

k=1

∫
H(hnk

)dµ

= K ·H(
1
N

) ·
N∑

k=1

1
µ(Enk

)
µ(Enk

)

= K ·H(
1
N

) ·N .

Since H is an N-function, limt→0
H(t)

t = 0. Thus limN→∞ K · H( 1
N ) · N = 0 . But since

H ∈ ∆′ then H ∈ ∆2 . So ‖ 1
N

∑N
k=1 hnk

‖H → 0 . To summarize, every subsequence of (hn)

has norm null arithmetic means and so (hn) is weakly null as we claimed. Now since F is

equivalent to H, there are constants λ1 > 0 and λ2 > 0 so that

λ1 ‖ f ‖F ≤ ‖ f ‖H ≤ λ2 ‖ f ‖F for all f ∈ L∗
H(= L∗

F ) .

By Theorem(2.1.3), (hn) has equi-absolutely continuous F-norms and thus, by the inequal-

ity above, (hn) also has equi-absolutely continuous H-norms.
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But this is clearly a contradiction.

Remark: The same result can be obtained from the work of T. Ando in [2]. Specifically

it follows directly from [2, Theorem 1], that given F ∈ ∆2, a subset K of L∗
F is relatively

weakly compact, if and only if

lim
t→0

(sup{F(tf)
t

: f ∈ K}) = 0

With this fact in hand, we can easily prove the following theorem.

Theorem 2.2.2 Let F be an N-function satisfying the ∆′ condition for all real x, y. That

is there is K > 0 so that F (xy) ≤ K · F (x) · F (y) for all x, y ∈ IR. Then L∗
F is reflexive.

Proof: Since F ∈ ∆′ then f ∈ ∆2. Furthermore

lim
t→0

(sup{F(tf)
t

: f ∈ BL∗F
}) = lim

t→0
(sup{

∫
Ω F (tf(ω))dµ(ω)

t
: f ∈ BL∗F

})

≤ lim
t→0

(sup{
∫
Ω K · F (t) · F (f(ω))dµ(ω)

t
: f ∈ BL∗F

})

= lim
t→0

K · F (t)
t

= 0 .

Thus BL∗F
is relatively weakly compact and so L∗

F is reflexive.

Now it is easy to see that given any N-function F ∈ ∆′ so that its complement G /∈ ∆2,

then there is no N-function H equivalent to F so that, H satisfies ∆′ for all real x, y.



Chapter 3

REFLEXIVE SUBSPACES OF NON-REFLEXIVE ORLICZ

SPACES.

3.1 Subspaces containing complemented l1

In this section we derive a theorem similar to the one of Kadec and Pelczýnski, about

L1 in [13]. The proofs are modeled after the ones in [6, pages 94-98].

Lemma 3.1.1 Let (fn) be a normalized disjointly supported sequence in L∗
F , where F ∈ ∆2

and its complement G satisfies limx→∞
G(cx)
G(x) = ∞, for some c > 0. Then there is a

subsequence (fnk
) of (fn) so that

i. (fnk
) is equivalent to l1’s unit vector basis.

ii. The closed linear span of (fnk
) is complemented in L∗

F by means of a projection of norm

less than or equal to 4c.

iii. The coefficient functionals (φk) extend to all of the dual of L∗
F and ‖φk‖ ≤ 4 for all

positive integers k.

Proof : Let En denote the support of fn. For each positive integer n choose gn ∈ LG with∫
G(gn)dµ ≤ 1 so that

∫
gnfndµ ≥ 1

2 . There is no harm in assuming that each gn is also

supported on En.

Claim that
∫

G(gn/c)dµ → 0 as n → ∞. Fix ε > 0. Since limx→∞
G(cx)
G(x) = ∞ then

limx→∞
G(x/c)
G(x) = 0. So we can choose x0 > 0 so that G(x/c)

G(x) < ε
2 whenever x ≥ x0. Since

the En’s are pairwise disjoint and µ is a probability, we have that µ(En) → 0 as n → ∞.

26
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So there is a positive integer N so that µ(En) < ε
2G(x0/c) whenever n ≥ N . So for n ≥ N

we have

∫
G(gn/c)dµ =

∫
[ |gn|<x0 ]

G(gn/c)dµ +
∫
[ |gn|≥x0 ]

G(gn/c)dµ

≤ G(x0/c)µ(En) +
ε

2

∫
G(gn)dµ

<
ε

2
+

ε

2
= ε

and so the claim is established.

Now choose a subsequence (nk) of the positive integers so that
∑∞

k=1

∫
G(gnk

c )dµ ≤ 1.

For any sequence of signs σ = (εk) define gσ =
∑∞

k=1 εkgnk
. Since the gnk

’s are disjointly

supported, gσ is well defined. Furthermore

∫
G(

gσ

c
)dµ =

∞∑
k=1

∫
Enk

G(
gσ

c
)dµ

=
∞∑

k=1

∫
Enk

G(
εkgnk

c
)dµ

=
∞∑

k=1

∫
Enk

G(
gnk

c
)dµ

≤ 1 .

So gσ ∈ L∗
G. Recall that the norm of gσ in L∗

G, is given by ‖gσ‖G = inf{ 1
k (1+

∫
G(kgσ)dµ) :

k > 0} and so it is easy to see that ‖gσ‖G remains constant as σ varies. Denote this constant

by M and observe that

M = ‖gσ‖G ≤ c(1 +
∫

G(
gσ

c
)dµ) = c(1 +

∞∑
k=1

∫
G(

gnk

c
)dµ) ≤ 2c .

Now for (ak) ∈ l1 let σ = (sign(ak)). Then

‖
∞∑

k=1

akfnk
‖F ≥ 1

‖gσ‖G

∫
(gσ

∞∑
k=1

akfnk
)dµ

=
1
M

∫
(
∞∑

k=1

|ak|gnk
fnk

)dµ
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=
1
M

∞∑
k=1

|ak|
∫

gnk
fnk

dµ

≥ 1
2M

∞∑
k=1

|ak| .

Hence (i) is established.

Now define for each k, a functional φk on all of L∗
F by

φk(f) =
1∫

gnk
fnk

dµ
·
∫

gnk
fdµ

and define P : L∗
F → L∗

F by

P (f) =
∞∑

k=1

φk(f)fnk
.

Then for k = 1, 2, . . .

‖φk‖ ≤ 2‖gnk
‖G ≤ 2 · (1 + G(gnk

)) ≤ 4 .

Furthermore P is a projection of L∗
F onto the closed linear span of (fnk

) with

‖P‖ = sup
‖f‖F≤1

‖
∞∑

k=1

∫
gnk

fdµ∫
gnk

fnk
dµ

· fnk
‖F

≤ 2 sup
‖f‖F≤1

∞∑
k=1

∫
|gnk

f |dµ

≤ 2 sup
‖f‖F≤1

‖(
∞∑

k=1

|gnk
|)‖G · ‖f‖F

= 2M

≤ 4c.

And so our proof is complete.

We state now the following result in form of a lemma. Its proof can be found in [6, page

50].

Lemma 3.1.2 Let (zn) be a basic sequence in the Banach space X with coefficient func-

tionals (z∗n). Suppose that there is a bounded linear projection P : X → X onto the closed
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linear span [zn] of (zn). If (yn) is any sequence in X for which

∞∑
n=1

‖P‖ · ‖z∗n‖ · ‖zn − yn‖ < 1,

then (yn) is a basic sequence equivalent to (zn) and the closed linear span [yn] of (yn) is also

complemented in X.

Lemma 3.1.3 Let (fn) be a sequence in L∗
F where F ∈ ∆2 and its complement G satisfies

limx→∞
G(cx)
G(x) = ∞ for some c > 0. Suppose that for each ε > 0 there is a positive integer

nε so that µ([ |fnε | ≥ ε‖fnε‖F ]) < ε. Then there is a subsequence (rn) of (fn) so that

( rn
‖rn‖F

) is equivalent to l1’s unit vector basis. Furthermore the closed linear span [rn] of

(rn) is complemented in L∗
F .

Proof : First observe that if f ∈ L∗
F , E = [ |f | ≥ ε‖f‖F ] and K is the norm of the inclusion

map L∗
G ↪→ L1 then

‖χE
f

‖f‖F
‖F ≥ ‖ f

‖f‖F
‖F − ‖χEc

f

‖f‖F
‖F

= 1− 1
‖f‖F

sup{|
∫

gχEcfdµ| : g ∈ LG and G(g) ≤ 1}

≥ 1− 1
‖f‖F

sup{‖g‖1 · ‖χEcf‖∞ : g ∈ LG and G(g) ≤ 1}

≥ 1− K

‖f‖F
‖χEcf‖∞

≥ 1− K

‖f‖F
‖f‖F · ε

= 1−Kε .

So using the hypothesis there is a measurable set E1 and a positive integer n1 so that

µ(E1) <
1

16c · 42K
and ‖χE1

fn1

‖fn1‖F
‖F ≥ 1− 1

16c · 42
.

Since F ∈ ∆2 then each f ∈ L∗
F has an absolutely continuous norm. This fact together

with the hypothesis again, yields a measurable E2 and a positive integer n2 > n1 so that

µ(E2) <
1

16c · 43K
,
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‖χE2

fn2

‖fn2‖F
‖F > 1− 1

16c · 43

and

‖χE2

fn1

‖fn1‖F
‖F <

1
16c · 43

.

Continue inductively to construct a subsequence (gn) of (fn) and a sequence of measurable

sets (En) so that

µ(En) <
1

16c · 4n+1K
,

‖χEn

gn

‖gn‖F
‖F > 1− 1

16c · 4n+1

and
n−1∑
k=1

‖χEn

gk

‖gk‖F
‖F <

1
16c · 4n+1

.

Now let

An = En \
∞⋃

k=n+1

Ek and hn =
gn

‖gn‖F
χAn .

Then

‖ gn

‖gn‖F
− hn‖F = ‖χAc

n

gn

‖gn‖F
‖F

≤ ‖χEc
n

gn

‖gn‖F
‖F + ‖χEn\An

gn

‖gn‖F
‖F

≤ 1
16c · 4n+1

+ ‖χ⋃∞
k=n+1

Ek

gn

‖gn‖F
‖F

≤ 1
16c · 4n+1

+ ‖
∞∑

k=n+1

χEk

gn

‖gn‖F
‖F

≤ 1
16c · 4n+1

+
∞∑

k=n+1

‖χEk

gn

‖gn‖F
‖F

≤ 1
16c · 4n+1

+
∞∑

k=n+1

1
16c · 4k+1

<
1

16c · 4n
.

Thus

1 ≥ ‖hn‖F
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= ‖χAn

gn

‖gn‖F
‖F

≥ ‖χEn

gn

‖gn‖F
‖F − ‖χ⋃∞

k=n+1
Ek

gn

‖gn‖F
‖F

≥ 1− 1
16c · 4n+1

−
∞∑

k=n+1

‖χEk

gn

‖gn‖F
‖F

≥ 1− 1
16c · 4n+1

−
∞∑

k=n+1

1
16c · 4k+1

> 1− 1
16c · 4n

.

And so

‖ gn

‖gn‖F
− hn

‖hn‖F
‖F ≤ ‖ gn

‖gn‖F
− hn‖F + ‖hn −

hn

‖hn‖F
‖F

≤ 1
16c · 4n

+ (1− ‖hn‖F )

≤ 1
16c · 4n

+ (1− 1 +
1

16c · 4n
)

=
2

16c · 4n
.

By Lemma (3.1.1), there is a subsequence (nk) of the positive integers so that

• ( hnk
‖hnk

‖F
) is equivalent to l1’s unit vector basis.

• The closed linear span [hnk
] of (hnk

) is complemented in L∗
F by means of a projection

P , of norm less than or equal to 4c.

• The coefficient functionals φk extend to all of L∗
G with ‖φk‖G ≤ 4 for all k.

So we have that if rk = gnk
then

∞∑
k=1

‖P‖ · ‖φk‖G · ‖
rk

‖rk‖F
− hnk

‖hnk
‖F
‖F ≤ 16c ·

∞∑
k=1

‖ gnk

‖gnk
‖F

− hnk

‖hnk
‖F
‖F

≤ 16c ·
∞∑

n=1

‖ gn

‖gn‖F
− hn

‖hn‖F
‖F

≤ 16c ·
∞∑

n=1

2
16c · 4n

=
∞∑

n=1

2
4n

< 1 .
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Hence the result is established by an appeal to Lemma (3.1.2).

Theorem 3.1.4 Let F ∈ ∆2 with its complement G satisfying

lim
x→∞

G(cx)
G(x)

= ∞ for some c > 0.

If X is any non-reflexive subspace of L∗
F then X contains an isomorphic copy of l1 that is

complemented in L∗
F .

Proof : Since X is not reflexive, then the ball BX of X is not relatively weakly compact.

Hence by Theorem (2.1.4), BX does not have equi-absolutely continuous norms. So by

Lemma (1.4.2), the set {F (f) : f ∈ BX} is not uniformly integrable in L1. Thus there is

a δ > 0 so that

lim
a→∞

sup{
∫
[ |f |≥a ]

F (f)dµ ; f ∈ BX} = δ .

Keeping in mind that the above limit is actually an infimum we can find an increasing

sequence (an) of positive reals, with an →∞ as n →∞ so that

δ ≤ sup{
∫
[ |f |≥an ]

F (f)dµ ; f ∈ BX} < δ +
1
n

,

for each positive integer n. It follows then, that there is a sequence (fn) in BX so that

δ − 1
n

<

∫
[ |fn|≥an ]

F (fn)dµ < δ +
1
n

for all positive integers n. Now let gn = fnχ[ |fn|≥an ] and hn = fn − gn. Observe that for

each ε > 0 we have

µ([ |gn| ≥ ε‖gn‖F ]) ≤ µ([ |gn| > 0 ])

≤ µ([ |fn| ≥ an ])

≤ 1
an

∫
[ |fn|≥an ]

|fn|dµ

≤ 1
an

∫
[ |fn|≥an ]

F (fn)dµ

≤ 1
an

,
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provided that n is large enough. Since 1
an
→ 0 as n →∞ then µ([ |gn| ≥ ε‖gn‖F ]) < ε for

even larger n. So by Lemma (3.1.3), (gn) has a subsequence that spans a complemented l1

in L∗
F .

We now show that (hn) has equi-absolutely continuous norms. Note that if m ≤ n then

[ |hm| ≥ an ] = ∅ while if m > n then

∫
[ |hm|≥an ]

F (hm)dµ =
∫
[ |fm|<am ]∩[ |fm|≥an ]

F (fm)dµ

=
∫
[ |fm|≥an ]

F (fm)dµ−
∫
[ |fm|≥am ]

F (fm)dµ

≤ sup{
∫
[ |f |≥an ]

F (f)dµ : f ∈ BX} − δ +
1
m

≤ δ +
1
n
− δ +

1
n

=
2
n

.

So for each positive integer n we have

sup
m

∫
[ |hm|≥an ]

F (hm)dµ = sup
m>n

∫
[ |hm|≥an ]

F (hm)dµ ≤ 2
n

.

It follows then that {F (hm) : m ≥ 1} is uniformly integrable in L1 and so by Lemma (1.4.2),

(hn) has equi-absolutely continuous norms as we claimed. Hence by Corollary (2.1.4), (hn)

is relatively weakly compact in L∗
F . So by passing to appropriate subsequences, we can

assume that (gn) spans a complemented l1 in L∗
F and (hn) is weakly convergent in L∗

F .

Thus (h2n − h2n+1) is weakly null. So by Mazur’s theorem, there is an increasing sequence

(nk) of positive integers and a sequence (ak) of non-negative reals so that

•
∑nk+1

j=nk+1 aj = 1.

• The sequence (wk) defined by wk =
∑nk+1

j=nk+1 aj(h2j − h2j+1) is norm-null in L∗
F .

Let

uk =
nk+1∑

j=nk+1

aj(f2j − f2j+1)
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and

vk =
nk+1∑

j=nk+1

aj(g2j − g2j+1) .

Then uk = vk + wk and ‖uk − vk‖F = ‖wk‖F → 0 as k → ∞. By selection, ( gn

‖gn‖F
) was

equivalent to l1’s unit vector basis with complemented span in L∗
F . As ‖gn‖F ≥

∫
F (gn)dµ ≥

δ − 1
n , (gn) itself is equivalent to l1’s unit vector basis. A little thought convinces us that

this is also the case with (vk), with the closed linear span of (vk) still complemented in L∗
F

of course. By passing to a subsequence to ensure that ‖uk − vk‖F converges to zero fast

enough to apply Lemma (3.1.2), the result is finished.

3.2 Some facts about Banach Spaces with type

In this section, we denote by (rn), the sequence of Rademacher functions. Recall that

for a positive integer n, rn : [0, 1] → {−1, 1} is defined by

• rn(1) = −1.

• rn(t) = (−1)(i−1) for t ∈ [ i−1
2n , i

2n ), where i = 1, . . . , 2n.

Definition 3.2.1 A Banach space X is said to have type p, for some 1 < p ≤ 2, if there is

a constant K so that

(
∫ 1

0
‖

n∑
i=1

ri(t)xi‖pdt)
1
p ≤ K(

n∑
i=1

‖xi‖p)
1
p ,

for any x1, . . . , xn ∈ X.

The following result allows some computational freedom :

Theorem 3.2.1 (Kahane’s inequality) A Banach space X has type 1 < p ≤ 2 if and

only if for each 1 ≤ q < ∞ there is a constant Kq > 0 such that

(
∫ 1

0
‖

n∑
i=1

ri(t)xi‖qdt)
1
q ≤ Kq(

n∑
i=1

‖xi‖p)
1
p

for any x1, . . . , xn ∈ X.
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It turns out that type’s presence in a Banach space, is ultimately connected with the space’s

finite dimensional structure. To be more specific, we need the following notion.

Definition 3.2.2 Let λ ≥ 1 and X be a Banach space. We say that X contains ln1 ’s

λ-uniformly if for each positive integer n there is an isomorphism T : ln1 → X so that

‖T‖ · ‖T−1‖ ≤ λ.

It is easy to see from the definition above that X contains ln1 ’s λ-uniformly if and only if

for each positive integer n, ∃ x1, . . . , xn ∈ BX such that

‖
n∑

i=1

aixi‖ ≥
1
λ

n∑
i=1

|ai| ,

for all choices of scalars a1, . . . , an.

Theorem 3.2.2 (Pisier) The following are equivalent for a Banach space X :

1. For each λ > 1, X does not contain ln1 ’s λ-uniformly.

2. For some λ > 1, X does not contain ln1 ’s λ-uniformly.

3. The space X has type p for some 1 < p ≤ 2.

For a proof of this theorem as well as a more detailed account and bibliography, the reader

should consult [26] and [25, pages 31-40].

3.3 Subspaces of L∗
F that have type

The work of Kadec and Pelczýnski in [13], finds its natural continuation in the work

of Rosenthal. In [27], Rosenthal shows that a subspace of L1 is reflexive if and only if it

has non-trivial type. In this section, we follow his lead, to show that the same fact holds

true for the special class of Orlicz spaces, we have been considering. The following result,

mentioned in the form of a lemma, is due to Dor and Kauffman ( see appendix and [8] ).
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Lemma 3.3.1 Suppose f1, . . . , fn ∈ BL1(µ) satisfy

‖
n∑

i=1

aifi‖1 ≥ θ
n∑

i=1

|ai| .

for any a1, . . . , an, where 0 < θ < 1.

Then there exist pairwise disjoint measurable sets A1, . . . , An such that

∫
Ai

|fi|dµ ≥ θ2 .

We now adapt that lemma to our purposes.

Lemma 3.3.2 Suppose f1, . . . , fn ∈ BL∗F (µ) satisfy

‖
n∑

i=1

aifi‖F ≥ θ
n∑

i=1

|ai| ,

for any a1, . . . , an, where 0 < θ < 1. Then there exist pairwise disjoint measurable sets

A1, . . . , An such that

‖χAifi‖F ≥ θ2 .

Proof : There is no loss in assuming that ‖
∑n

i=1 aifi‖F > θ
∑n

i=1 |ai|, provided that not all

of a1, . . . , an are zero. Choose now g ∈ BL∗G
, where G is the complement of F , so that

|
∫

g(
n∑

i=1

aifi)dµ| > θ
n∑

i=1

|ai| .

Then ∫
|

n∑
i=1

ai(gfi)|dµ > θ
n∑

i=1

|ai|

and so by Lemma (3.3.1) there is a collection of measurable and pairwise disjoint sets

A1, . . . , An so that ∫
Ai

|gfi|dµ ≥ θ2 ∀i = 1, . . . , n .
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By Hölder’s inequality we then have that for each i = 1, . . . , n

‖χAifi‖F ≥ ‖g‖G · ‖χAifi‖F

≥
∫

Ai

|gfi|dµ

≥ θ2 ,

which is what we wanted.

The following theorem, characterizes reflexive subspaces of L∗
F , for F ∈ ∆2, with com-

plement G satisfying limt→∞
G(mt)
G(t) = ∞

Theorem 3.3.3 Let F ∈ ∆2, with its complement G satisfying

lim
t→∞

G(mt)
G(t)

= ∞

for some m > 0. Let X be a subspace of L∗
F . Then the following are equivalent :

1. The space X is not reflexive.

2. The space X contains a copy of l1 complemented in L∗
F .

3. The space X contains ln1 ’s uniformly.

4. The space X fails to have non-trivial type.

Proof : The implication ”1 ⇒ 2” is just theorem (3.1.4). As for ”2 ⇒ 3” it follows directly

from the definitions. The double implication ”3 ⇔ 4” is Pisier’s theorem. So we will only

show ”3 ⇒ 1”.

Suppose that X contains ln1 ’s uniformly. Then there is a 0 < θ < 1 so that for each

positive integer n, there are functions f1, . . . , fn ∈ BX satisfying

‖
n∑

i=1

aifi‖F ≥ θ
n∑

i=1

|ai| ,
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for any choice of scalars a1, . . . , an. So by Lemma (3.3.2), we have that for each posi-

tive integer n, there are functions f1, . . . , fn ∈ BX and measurable, pairwise disjoint sets

A1, . . . , An so that

‖χAifi‖F ≥ θ2 i = 1, . . . , n .

Since A1, . . . , An are pairwise disjoint, at least one of them must have µ-measure less than

1
n . Thus BX cannot have equi-absolutely continuous norms. Hence by Corollary (2.1.4),

BX is not weakly compact in L∗
F and so X is not reflexive.



Appendix A

THE PRESENCE OF UNIFORM ln1 ’s IN L1(µ)

Lemma 3.3.1 was presented to me in this form by Joe Diestel. So for the purpose of

completeness I include its proof here. Our result will be a direct consequence of the following

two lemmas.

Lemma A.1 Suppose that f1, . . . , fn ∈ BL1(µ) and for some 0 < θ < 1 we have

‖
n∑

i=1

aifi‖1 ≥ θ
n∑

i=1

|ai|,

for any choice of scalars a1, . . . , an. Then

‖ max
1≤i≤n

|aifi| ‖1 ≥ θ2
n∑

i=1

|ai|,

for any a1, . . . , an.

Lemma A.2 Let f1, . . . , fn be non-negative elements of BL1(µ) and suppose that there is

c > 0 so that ∫
Ω
( max
1≤i≤n

aifi) dµ ≥ c
n∑

i=1

ai,

for any non-negative scalars a1, . . . , an. Then there exist pairwise disjoint measurable sets

A1, . . . , An such that ∫
Ai

fi dµ ≥ c,

for i = 1, . . . , n.

Proof of A.1: Let (rn) denote the sequence of Rademacher functions. Then using Fubini’s

theorem, it is easy to see that

θ
n∑

i=1

|ai| ≤
∫ 1

0
‖

n∑
i=1

airi(t)fi‖1 dt

39
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=
∫ 1

0

∫
Ω
|

n∑
i=1

airi(t)fi(ω)| dµ(ω) dt

=
∫
Ω

∫ 1

0
|

n∑
i=1

airi(t)fi(ω)| dt dµ(ω)

≤
∫
Ω
(
∫ 1

0
|

n∑
i=1

airi(t)fi(ω)|2 dt)
1
2 dµ(ω)

≤
∫
Ω
(

n∑
i=1

|airi(t)fi(ω)|2)
1
2 dµ(ω)

≤
∫
Ω
( max
1≤i≤n

|aifi(ω)|)
1
2 · (

n∑
i=1

|aifi(ω)|)
1
2 dµ(ω)

≤ (
∫
Ω

max
1≤i≤n

|aifi(ω)| dµ(ω))
1
2 · (

∫
Ω

n∑
i=1

|aifi(ω)| dµ(ω))
1
2

≤ (
n∑

i=1

|ai|)
1
2 · (‖ max

1≤i≤n
|aifi| ‖1)

1
2

and so the first lemma is finished.

Proof of A.2: The proof of the second result is more involved and relies on clever usage of

the Hahn-Banach and Krein-Milman theorems. We proceed in three parts.

PART I: We first show that there exist non-negative ϕ1, . . . , ϕn in L∞ with
∑n

i=1 ϕi ≤ 1 so

that
∫
Ω ϕifi dµ ≥ c for all 1 ≤ i ≤ n.

Let

D = { (ϕ1, . . . , ϕn) ∈ (L∞)n : ϕ1, . . . , ϕn ≥ 0,
n∑

i=1

ϕi ≤ 1 } .

View D as a subset of (L∞ ⊕ · · · ⊕ L∞)ln∞ and note that D is weak∗-compact and convex.

Define T : (L∞ ⊕ · · · ⊕ L∞)ln∞ → ln∞ by

T (ϕ1, . . . , ϕn) = (
∫
Ω

ϕ1f1 dµ, . . . ,

∫
Ω

ϕnfn dµ) .

It is plain that T is weak∗ to norm continuous and linear. Thus T (D) is a compact convex

subset of ln∞. Consider now

C = { (c1, . . . , cn) ∈ ln∞ : ci ≥ c, i = 1, . . . , n }.
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Clearly C is a closed and convex subset of ln∞. In order to establish Part I we only need to

show that T (D) ∩ C 6= ∅.

So suppose that T (D) ∩ C = ∅. Then by the Hahn-Banach theorem there is λ < 1 and a

point (a1, . . . , an) in the unit sphere of ln1 such that

n∑
i=1

ai

∫
Ω

ϕifi dµ ≤ λ < 1 ≤
n∑

i=1

aici

for all (c1, . . . , cn) ∈ C, (ϕ1, . . . , ϕn) ∈ D. Observe that a1, . . . , an are non-negative and

c
∑n

i=1 ai ≥ 1. Let

g = max
1≤i≤n

aifi.

Choose pairwise disjoint and measurable sets E1, . . . , En so that on each Ei, g = aifi. Then

(χE1 , . . . , χEn) ∈ D and so

λ < c
n∑

i=1

ai ≤
∫
Ω

g dµ =
∫
Ω
(

n∑
i=1

aifiχEi)dµ =
n∑

i=1

ai

∫
Ω

fiχEidµ ≤ λ,

which is obviously a contradiction.

PART II: Take non-negative ϕ1, . . . , ϕn ∈ L∞ with
∑n

i=1 ϕi ≤ 1 and
∫
Ω ϕifi dµ ≥ c for

i = 1, . . . , n. We will show that there exist disjointly supported functions x1, . . . , xn ∈ L∞,

with exactly the same characteristics. That is x1, . . . , xn non-negative with
∑n

i=1 xi ≤ 1

and
∫
Ω xifi dµ ≥ c for i = 1, . . . , n. Look at

D0 = { (x1, . . . , xn) ∈ D :
∫
Ω

xifi dµ =
∫
Ω

ϕifi dµ for i = 1, . . . , n}.

D0 is a non-empty weak∗-compact convex subset of D. By the Krein-Milman theorem D0

has an extreme point say (x1, . . . , xn). We claim that x1, . . . , xn are disjointly supported.

For if not then there are 1 ≤ i < j ≤ n and η > 0 so that x = xi ∧ xj > η on some set E of

positive measure. Now since µ is non-atomic, the span of the set {x ·χF : F ⊂ E, F ∈ Σ} is

infinite dimensional and so it contains a non-zero h with |h| ≤ x and
∫
Ω hfi dµ =

∫
Ω hfj dµ =

0. But now the points (x1, . . . , xi−1, xi + h, xi+1, . . . , xj−1, xj − h, xj+1, . . . , xn) and
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(x1, . . . , xi−1, xi−h, xi+1, . . . , xj−1, xj +h, xj+1, . . . , xn) are two distinct points of D0 whose

average is (x1, . . . , xn) which is impossible. So Part II is finished.

PART III: Let Ai be the support of xi. Then for each i we have

c ≤
∫
Ω

ϕifi dµ =
∫
Ω

xifi dµ

=
∫

Ai

xifi dµ

≤
∫

Ai

fi dµ.
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